
TECHNICAL GUIDE

Building Reliable
Applications with
Durable Execution

1Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

This guide introduces the concept of durable execution,

which is used by organizations like Stripe, Netflix,

HashiCorp, Datadog, and many others to solve a wide

range of problems in distributed systems. It explains

how some of those problems are solved, shows the new

programming possibilities that durable execution opens up,

and includes an example application that demonstrates

how simple it is to write durable code.

Understanding distributed systems 2

Durable execution 4

Writing durable code 5

Create an order 6

Get order status 8

Picking up an order 10

Delivery 12

New possibilities 14

Distributed systems, simplified 16

Event-driven architecture 16

Task queues 16

Sagas 16

Conclusion 17

AUTHOR
Loren Sands-Ramshaw - @lorendsr
Developer Relations Engineer, Temporal

https://twitter.com/lorendsr

2Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Understanding distributed systems
For developers working on a traditional request-response monolith backed by

a single database that supports transactions, there tend to be little distributed

system challenges. Failure modes tend to be comparatively simple and

straightforward to resolve:

إ If the client can’t reach the server, the client retries.

إ If the client reaches the server, but the server can’t reach the database, the

server responds with an error, and the client retries.

إ If the server reaches the database, but the transaction fails, the server

responds with an error, and the client retries.

إ If the transaction succeeds but the server or network goes down before

responding to the client, the client retries until the server is back up, and

the transaction fails the second time (assuming the transaction has some

check–like an idempotency token–to tell whether the update has already been

applied), and the server reports to the client that the action has already been

performed.

Many of these issues can be solved simply by retrying, and state can be

accurately maintained without heroic efforts by developers.

However, as soon as we introduce a second place where state is stored and

maintained—whether that’s a service with its own database or an external API—

handling failures and maintaining consistency (accuracy across all data stores)

gets significantly more complex. For example, if our server has to charge a credit

card and also update the database, we can no longer write simple code like:

function handleRequest() {
 paymentAPI.chargeCard()
 database.insertOrder()
 return 200
}

3Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

If the first step (charging the card) succeeds, but the second step (adding the

order to the database) fails, then the system ends up in an inconsistent state;

the customer was charged for a purchase, but there’s no record of the purchase

in the database. To try to maintain consistency (and avoid angry customers),

it might make sense to automatically retry the second step until the order has

been successfully written to the database.

This is a perfectly valid way to work around the problem (assuming

insertOrder() is idempotent), if indeed the database is simply experiencing a

brief hiccup. But the negative impacts of a less-than-ideal outcome are already

becoming clear; if the process running this code fails before it updates the

database, we’ll again end up in an inconsistent state.

To address this risk, the application now needs to do three things:

إ Persist the order details

إ Persist which steps of the program we’ve completed

إ Run a worker process that checks the database or a task queue for

incomplete orders and continues with the next step

Now imagine that the application in question does something more complicated

after these first two steps, like updating inventory records, generating a shipping

label, or assigning a delivery driver. That, along with persisting retry state and

adding timeouts for each step, is a lot of code to write, and it’s easy to miss

certain edge cases or failure modes (see the full, scalable architecture) along

the way. All of which is to say, developers could build more reliable applications in

less time if we didn’t have to write and debug all of that code to handle failures.

Fortunately, durable execution was designed with this exact situation in mind.

https://temporal.io/blog/workflow-engine-principles

4Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Durable execution
Durable execution guarantees that the code is executed to completion, no

matter how (un)reliable the hardware the code is running on, or how often the

network goes down, or how long downstream services are down. Retries and

timeouts are performed automatically and transparently, and resources are

freed up when nothing is happening (for example, while the code is waiting for a

downstream service to come back up).

This is possible because durable execution systems like Temporal persist each

step your code takes. If the process or container running the code dies, the code

automatically continues running in another process with all state intact, including

call stack and local variables.

All the complex plumbing logic that developers had to implement in our normal

execution world—error handling, retry logic, saving state for each step, polling

task queues—durable execution handles automatically1.

There are a number of systems that provide durable

execution, including Azure Durable Functions, AWS Simple

Workflow Service, and Uber Cadence, a project which was

open-sourced by Maxim Fateev and Samar Abbas, who

went on to found Temporal in 2019. Temporal is also open

source (MIT license) with a team of engineers working on

the software full-time. If you’ve recently posted a Snapchat

story, booked a stay through AirBnB, or ordered from Taco

Bell online, you’ve already experienced a Temporal workflow.

1 Of course, as a developer you can still exercise control over things like retry behavior—the point here is that there
is some default retry logic at all, rather than none.

Interested in
how this all
works? Check
out this blog
post: How Durable

Execution Works

https://temporal.io/blog/building-reliable-distributed-systems-in-node-js-part-2
https://temporal.io/blog/building-reliable-distributed-systems-in-node-js-part-2

5Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Writing durable code

Now that we’ve gone over consistency in distributed systems and what durable execution is, let’s

look at a practical example. To better illustrate what durable code looks like and what problems it

solves, I built an example food delivery app, which you can find at temporal.menu.

The sample app has four main pieces of

functionality:

إ Create an order and charge the customer

إ Get order status

إ Mark an order picked up

إ Mark an order delivered

When we order an item from the menu, it

appears in the delivery driver site (drive.

temporal.menu), and the driver can mark the

order as picked up, and then as delivered.

All of this functionality is implemented in a

single function of durable TypeScript, but

Temporal also has runtimes for Go, Java,

Python, .NET, and PHP.

http://temporal.menu
http://drive.temporal.menu
http://drive.temporal.menu
https://docs.temporal.io/dev-guide/go/introduction#additional-resources
https://docs.temporal.io/dev-guide/java/introduction#additional-resources
https://docs.temporal.io/dev-guide/python/introduction#additional-resources
https://github.com/temporalio/sdk-dotnet#readme
https://docs.temporal.io/dev-guide/php/foundations

6Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Create an order

Let’s take a look at the code for this app. We’ll see a few API routes but mostly

go over each piece of the single durable function named order. If you’d like to

run the app or view the code on your machine, this will download and set up the

project (you need to install Node first):

When the user clicks the order button, the React frontend calls the createOrder

mutation defined by the tRPC backend (which sends a POST to the API server).

The createOrder API route handler creates the order by starting a durable order

function:

apps/menu/pages/api/[trpc].ts You can also read through
the code on GitHub.

import { initTRPC } from ‘@trpc/server’
import { z } from ‘zod’
import { taskQueue } from ‘common’
import { Context } from ‘common/trpc-context’
import { order } from ‘workflows’

const t = initTRPC.context<Context>().create()

export const appRouter = t.router({
 createOrder: t.procedure
 .input(z.object({ productId: z.number(), orderId: z.string() }))
 .mutation(async ({ input, ctx }) => {
 await ctx.temporal.workflow.start(order, {
 workflowId: input.orderId,
 args: [input.productId],
 taskQueue,
 })

 return ‘Order received and persisted!’
 }),

npx @temporalio/create@latest --sample food-delivery

https://nodejs.org/en/download/package-manager/
https://trpc.io/
https://github.com/temporalio/samples-typescript/blob/main/food-delivery/apps/menu/pages/api/%5Btrpc%5D.ts
https://github.com/temporalio/samples-typescript/blob/main/food-delivery/apps/menu/pages/api/%5Btrpc%5D.ts
https://github.com/temporalio/samples-typescript/tree/main/food-delivery

7Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Durable functions—called Workflows in Temporal—are started using a Client

instance from @temporalio/client, which has been added to the tRPC context

under ctx.temporal. The route handler receives a validated input (an object with

a productId number and `orderId` string) and it calls ctx.temporal.workflow.
start to start an order Workflow, providing input.productId as an argument.

The order function starts out validating the input, setting up the initial state, and

charging the customer:

packages/workflows/order.ts

type OrderState = ‘Charging card’ | ‘Paid’ | ‘Picked up’ | ‘Delivered’ | ‘Refunding’

export async function order(productId: number): Promise<void> {
 const product = getProductById(productId)
 if (!product) {
 throw ApplicationFailure.create({ message: `Product ${productId} not found` })
 }

 let state: OrderState = ‘Charging card’

 try {
 await chargeCustomer(product)
 } catch (err) {
 const message = `Failed to charge customer for ${product.name}. Error: ${errorMessage(err)}`
 await sendPushNotification(message)
 throw ApplicationFailure.create({ message })
 }

 state = ‘Paid’

https://github.com/temporalio/samples-typescript/blob/main/food-delivery/packages/workflows/order.ts

8Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Any functions that might fail are automatically retried. In this case,

chargeCustomer and sendPushNotification both talk to services that might be

down at the moment or might return transient error messages like “Temporarily

unavailable.” Temporal will automatically retry running these functions (by default

indefinitely with exponential backoff, but that’s configurable). The functions can

also throw non-retryable errors like “Card declined,” in which case they won’t

be retried. Instead, the error will be thrown out of chargeCustomer(product)

and caught by the catch block; the customer receives a notification that their

payment method failed, and we throw an ApplicationFailure to fail the order

Workflow. Sending the customer the failure notification is called a failure

compensation, and reliably executing compensation logic is a valuable aspect

of durable execution. It makes sagas (long-running transactions in which failures

are handled by undoing/compensating for previous steps) easy to implement.

See more failure compensations below in refundAndNotify().

Get order status

The next bit of code requires some background: Normal functions can’t run for

a long time, because they’ll take up resources while they’re waiting for things to

happen, and at some point they’ll terminate when we deploy new code and the

old containers get shut down. Durable functions can run for an arbitrary length of

time for two reasons:

إ They don’t take up resources when they’re waiting on something.

إ It doesn’t matter if the process running them gets shut down—execution will

seamlessly be continued by another process.

So although some durable functions run for a short period of time—like a money

transfer function—some run longer—like our order function, which ends when

the order is delivered, or a customer loyalty program function that lasts for the

lifetime of the customer.

https://temporal.io/blog/compensating-actions-part-of-a-complete-breakfast-with-sagas
https://temporal.io/blog/compensating-actions-part-of-a-complete-breakfast-with-sagas
https://temporal.io/blog/saga-pattern-made-easy

9Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

It’s useful to be able to interact with long-running functions, so Temporal

provides what we call Signals for sending data into the function and Queries for

getting data out of the function. The driver site shows the status of each order

by sending Queries to the order functions through this API route:

apps/menu/pages/api/[trpc].ts

It gets a handle to the specific instance of the order function (called a

Workflow Execution), sends the getStatusQuery, and returns the result. The

getStatusQuery is defined in the order file and handled in the order function:

packages/workflows/order.ts

When the order function receives the getStatusQuery, the function passed to

setHandler is called, which returns the values of local variables. After the call to

chargeCustomer succeeds, the state is changed to ’Paid’, and the driver site,

which has been polling getStatusQuery, gets the updated state. It displays the

“Pick up” button.

 getOrderStatus: t.procedure
 .input(z.string())
 .query(({ input: orderId, ctx }) => ctx.temporal.workflow.getHandle(orderId).
query(getStatusQuery)),

import { defineQuery, setHandler } from ‘@temporalio/workflow’

export const getStatusQuery = defineQuery<OrderStatus>(‘getStatus’)

export async function order(productId: number): Promise<void> {
 let state: OrderState = ‘Charging card’
 let deliveredAt: Date

 // …

 setHandler(getStatusQuery, () => {
 return { state, deliveredAt, productId }
 })

https://github.com/temporalio/samples-typescript/blob/cb617abb3e0f58a6911c66615f9c2c665e0307b0/food-delivery/apps/menu/pages/api/%5Btrpc%5D.ts#L23-L25
https://github.com/temporalio/samples-typescript/blob/cb617abb3e0f58a6911c66615f9c2c665e0307b0/food-delivery/packages/workflows/order.ts#L55-L57

10Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Picking up an order

When the driver taps the button to mark the order as picked up, the site sends

a pickUp mutation to the API server, which sends a pickedUpSignal to the order

function:

apps/driver/pages/api/[trpc].ts

The order function handles the Signal by updating the state:

packages/workflows/order.ts

 pickUp: t.procedure
 .input(z.string())
 .mutation(async ({ input: orderId, ctx }) =>
 ctx.temporal.workflow.getHandle(orderId).signal(pickedUpSignal)
),

export const pickedUpSignal = defineSignal(‘pickedUp’)

export async function order(productId: number): Promise<void> {
 // …

 setHandler(pickedUpSignal, () => {
 if (state === ‘Paid’) {
 state = ‘Picked up’
 }
 })

https://github.com/temporalio/samples-typescript/blob/main/food-delivery/apps/driver/pages/api/%5Btrpc%5D.ts
https://github.com/temporalio/samples-typescript/blob/cb617abb3e0f58a6911c66615f9c2c665e0307b0/food-delivery/packages/workflows/order.ts#L42-L46

11Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Meanwhile, further down in the function, after the customer was charged, the

function has been waiting for the pickup to happen:

packages/workflows/order.ts

await condition(() => state === ‘Picked up’, ‘1 min’) waits for up to

1 minute for the state to change to Picked up. If a minute goes by without it

changing, it returns false, and we refund the customer. (Either we have very high

standards for the speed of our chefs and delivery drivers, or we want the users

of a demo app to be able to see all the failure modes 😁.)

import { condition } from ‘@temporalio/workflow’

export async function order(productId: number): Promise<void> {
 // …

 try {
 await chargeCustomer(product)
 } catch (err) {
 // …
 }

 state = ‘Paid’

 const notPickedUpInTime = !(await condition(() => state === ‘Picked up’, ‘1 min’))
 if (notPickedUpInTime) {
 state = ‘Refunding’
 await refundAndNotify(
 product,
 ‘⚠ No drivers were available to pick up your order. Your payment has been refunded.’
)
 throw ApplicationFailure.create({ message: ‘Not picked up in time’ })
 }

 …
}

async function refundAndNotify(product: Product, message: string) {
 await refundOrder(product)
 await sendPushNotification(message)
}

https://github.com/temporalio/samples-typescript/blob/cb617abb3e0f58a6911c66615f9c2c665e0307b0/food-delivery/packages/workflows/order.ts#L70

12Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Delivery

Similarly, there’s a deliveredSignal sent by the “Deliver” button, and if the driver

doesn’t complete delivery within a minute of pickup, the customer is refunded.

packages/workflows/order.ts

export const deliveredSignal = defineSignal(‘delivered’)

export async function order(productId: number): Promise<void> {
 setHandler(deliveredSignal, () => {
 if (state === ‘Picked up’) {
 state = ‘Delivered’
 deliveredAt = new Date()
 }
 })

 // …

 await sendPushNotification(‘🚗 Order picked up’)

 const notDeliveredInTime = !(await condition(() => state === ‘Delivered’, ‘1 min’))
 if (notDeliveredInTime) {
 state = ‘Refunding’
 await refundAndNotify(product, ‘⚠ Your driver was unable to deliver your order. Your payment
has been refunded.’)
 throw ApplicationFailure.create({ message: ‘Not delivered in time’ })
 }

 await sendPushNotification(‘✅ Order delivered!’)

https://github.com/temporalio/samples-typescript/blob/cb617abb3e0f58a6911c66615f9c2c665e0307b0/food-delivery/packages/workflows/order.ts#L82-L89

13Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

If delivery was successful, the function waits for a minute for the customer to eat

their meal and asks them to rate their experience.

After the final push notification, the order function’s execution ends, and the

Workflow Execution completes successfully. Even though the function has

completed, we can still send Queries, since Temporal has the final state of the

function saved. And we can test that by refreshing the page a minute after an

order has been delivered: the getStatusQuery still works and “Delivered” is shown

as the status:

 await sleep(‘1 min’) // this could also be hours or even months

 await sendPushNotification(`✍ Rate your meal. How was the ${product.name.toLowerCase()}?`)
}

14Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

New possibilities
Durable execution is programming on a higher level of abstraction, where you don’t

have to be concerned about transient faults in your infrastructure or dependencies. It

opens up new possibilities like:

إ Writing code that sleeps for a month. You can realistically instruct a function to

sleep for any arbitrary length of time, be it weeks, months, or years. Thanks to durable

execution, we don’t need to be concerned about whether or not the process can

safely be expected to run for that period of time—we can be confident that another

process will continue running the function at the specified time. For example, a

subscription function can charge the user’s credit card every month in a loop:

إ Functions can receive RPCs. Since the functions are potentially long-running, we may

want to fetch their state, or tell them to do something different—like get how many

times the user has been charged, or cancel the subscription:

15Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

إ Functions can run forever. For example, a loyalty program function can be started

when a user signs up, receive an RPC whenever the user makes a purchase, and do

something when the user hits the next reward level:

إ Store state in local variables instead of a database. Since a function can run forever,

and we can trust that a local variable will always be there and be accurate, we can

send an RPC to get the variable’s value instead of storing it in a DB:

16Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Distributed systems, simplified

Durable execution makes it trivial or unnecessary to implement many distributed

systems patterns, including event-driven architecture, task queues, saga

patterns, cron jobs, state machines, circuit breakers, and transactional

outboxes. For a more in-depth explanation of each of these, you can watch

System Design on Easy Mode, which I presented at the All Things Open

conference in Raleigh, NC.

Event-driven architecture

Using a message bus to communicate between services is great for loose

coupling at runtime, but it’s tightly coupled at design time. Making a breaking

change to a message sent to a bus means finding all the other teams that

depend on that message and getting them to deploy an update to their code

before you can deploy your change. Durable execution is also loosely coupled at

runtime, but it’s a much better developer experience when building and evolving

systems. For more on this topic, see the Replay conference keynote: The way

forward for event-driven architecture.

Task queues

Anything that we would normally use task queues for can instead be

accomplished with durable execution. Under the hood, every durable function–

and every step the function takes–is put on a task queue and distributed across

a pool of workers. All we need to do is provide our code to Temporal’s worker

library and ensure we’re running enough worker processes to get through all the

work in the desired time frame.

Sagas

Sagas are long-running transactions that don’t hold locks; instead, each

step is executed sequentially, and if a step fails, previous steps are undone

with compensating steps. This is a common pattern when we need to

alter state that’s stored across multiple data stores, and it requires either

choreography (event-based) or orchestration (central coordinator) to be

accurately implemented. The Microservices Patterns book recommends using

orchestration for non-trivial use cases (and I’d argue for all use cases) due

to the complexity of choreography (see event-driven architecture above),

and executing steps with durable execution is developer-friendly, automatic

orchestration—it orchestrates each step our code takes.

https://temporal.io/blog/saga-pattern-made-easy
https://temporal.io/blog/saga-pattern-made-easy
https://temporal.io/blog/temporal-schedules-reliable-scalable-and-more-flexible-than-cron-jobs
https://microservices.io/patterns/reliability/circuit-breaker.html
https://microservices.io/patterns/data/transactional-outbox.html
https://microservices.io/patterns/data/transactional-outbox.html
https://www.youtube.com/watch?v=f1CN6tuPkfk&list=PL6kQg8bP1Ji6fjHgdmf05lLe8Er9RLM8F
https://youtu.be/pfArIYRVsbo
https://youtu.be/pfArIYRVsbo
https://temporal.io/blog/saga-pattern-made-easy
https://www.manning.com/books/microservices-patterns

17Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

Conclusion
We’ve seen how a multi-step order flow can be implemented with a single

durable function. The function is guaranteed to complete in the presence of

failures, including:

إ Temporary issues with the network, downstream services, or third-party APIs

إ The process running the function failing

This addressed a number of distributed systems concerns for us, and meant that:

إ It was possible to use and rely on local variables instead of saving state to a

database.

إ We didn’t need to set timers in a database for application logic like canceling

an order that takes too long, or waiting for the rate-your-meal push notification.

إ There was no need to write code to handle retrying and timing out all

the functions we called that make network requests: chargeCustomer,

refundOrder, and sendPushNotification.

إ We didn’t need to write polling logic for workers to notice when it’s time to

cancel the order, or retry a failed function.

إ We didn’t need to implement a state machine and have workers continue

executing the next step in a multi-step process like refundAndNotify().

18Technical Guide
Building Reliable Applications with Durable Execution

te
mp
or
al
.i
o

And with durable execution, the example application also benefits from:

إ Increased reliability: The more code we write, and the more complex the code is, the

more bugs we have. With durable execution, we write less code and simpler code,

which means fewer bugs. So much of the complexity is taken care of by the durable

execution system, which has been tested and run for years by hundreds of companies

at high scale under many failure scenarios.

إ Increased development velocity: The logic of our order system is much easier

to read, understand, and alter, since it’s all contained in this single function. If our

logic was spread out across various API endpoints, database entries, and workers,

it would take our developers longer to onboard, develop, and debug. We often hear

from companies migrating to Temporal that their engineers were afraid to touch the

old system, as it was so complex that it was hard to know if a change would cause

something to go wrong.

إ Increased observability: Since every step our durable functions take is persisted, we

can view the current state of every production function execution. Temporal provides a

UI for viewing and searching through executions, where you can see what arguments

a function was called with, when it was started, which step it’s on, and the log of

everything that the function has done so far. If the payment service is currently down,

we’ll see that the order is stuck at the `chargeCustomer` step and how many times

the function has been retried, and when the next retry is scheduled for.

إ Increased debuggability: In addition to the better visibility into our production system,

we can also debug our production functions! We can download an execution’s event

log and use it to replay the function on our local machine, so that we can open the

execution in a debugger and watch what happened. (For more info, see Time-Travel

Debugging Production Code.) We can also fast-forward through time, so when your

code calls `sleep(‘1 month’)`, it resolves immediately.

I hope you’re getting a sense of how much durable execution simplifies writing

software. To learn more, I recommend these resources:

إ Video: Getting to know Temporal

إ Video: The way forward for event-driven architecture

إ Course: Temporal 101

إ Community Slack

إ Part 2: How Durable Execution Works

https://temporal.io/blog/time-travel-debugging-production-code
https://temporal.io/blog/time-travel-debugging-production-code
https://youtu.be/wIpz4ioK0gI
https://youtu.be/pfArIYRVsbo
https://t.mp/101
https://t.mp/slack
https://temporal.io/blog/building-reliable-distributed-systems-in-node-js-part-2

JOIN OUR COMMUNITY SLACK

EXPLORE PROJECT-BASED TUTORIALS

https://t.mp/slack
https://learn.temporal.io/tutorials/
https://learn.temporal.io/tutorials/go/
https://learn.temporal.io/tutorials/php/
https://learn.temporal.io/tutorials/python/
https://learn.temporal.io/tutorials/typescript/
https://t.mp/slack

